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Abstract. We use the Rayleigh—Sdhdinger perturbation theory to calculate the corrections to the
adiabatic geometric phase due to a perturbation of the Hamiltonian. We show that these corrections
are at least of second order in the perturbation parameter. As an application of our general results
we address the problem of the adiabatic geometric phase for a one-dimensional particle which is
confined to an infinite square well with moving walls.

1. Introduction

In[1], Pereshogin and Pronin consider the problem of the calculation of the adiabatic geometric
phase [2] for a free particle confined between moving walls. The quantum dynamics of this
system has been studied by Doescher and Rice [3], Matiat [4], Berry and Klein [5],
Greenbereger [6], Pinder [7], Seba [8], Makowski and co-workers [9], Devoto and Pomorisac
[10] and Dodonoet al [11]. The analysis of Pereshogin and Pronin [1] is, however, different

in nature, as it uses the geometric ideas of parallel transportation in vector bundles to derive an
effective Hamiltonian for the system. They suggest that the quantum dynamics of the system is
determined by the effective Hamiltonian and employ the Rayleigh-é8ahger perturbation
theory to obtain the first non-vanishing contribution to Berry’s connection 1-form (vector
potential) for the effective Hamiltonian.

The phenomenon of the geometric phase induced by moving boundaries was initially
considered by Levy-Leblond [12], who calculated the phase shift of the wavefunction of a free
particle which is forced to pass through a waveguide of finite length. There is also a mention of
a ‘geometric phase’ in Greenberger’s analysis of the dynamics of a particle confined between
moving walls [6]. Greenberger’s terminology is, however, not appropriate, for what he calls
a geometric phase depends on spatial coordinates. Therefore, it is not really the phase of the
state vector in the Hilbert space and must not be confused with the geometric phase of Berry
[2] and its non-adiabatic generalization due to Aharonov and Anandan [13]. In fact, to the best
of the author’s knowledge, Pereshogin and Pronin’s paper [1] is the only publication in which
the authors use Berry’s framework to study the problem of the adiabatic geometric phase due
to moving boundaries.

In the present paper we address the problem of the perturbative calculation of Berry’s
connection 1-form for a general non-degenerate Hamiltonian. Furthermore, we use the
method of time-dependent quantum canonical transformations [14, 15] to study the dynamics
of a particle confined between moving walls. We then apply our general results to obtain a
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perturbative expression for the adiabatic geometric phase for this system. In particular, we
shall consider the special case where the particle is free and compare our results with those of
Pereshogin and Pronin.

This paper is organized as follows. In sections 2 and 3, we shall offer a brief review of the
(cyclic and non-cyclic) adiabatic geometric phases and the Rayleighddaber perturbation
theory, respectively. In section 4, we derive an expression for Berry’s connection 1-form which
yields the perturbative corrections to the connection 1-form for the non-perturbed system to
arbitrary orders of perturbation. In section 5, we treat the quantum dynamics of a particle
confined between movingwalls. In section 6, we address the problem of the adiabatic geometric
phase for this system. In section 7, we summarize our main results and conclude the paper
with our final remarks.

2. Adiabatic geometric phase

Consider a parametric Hamiltoniaii[ R] satisfying the following conditions:

e H[R] depends on a set of real paramet&rs= (R, R?, ..., RY) which are identified
with local coordinates of a smooth parameter manifoldt.

e H[R]is a Hermitian operator with a discrete spectrum for all possible valu&s of

e The eigenvalues,[R] of H[R] are non-degenerate for all possible valueskof In
particular, asR changes in time, no level crossings occur.

e The eigenvalue&,[R] of H[R] are smooth functions aR.

Now if the parameter® change in time € [0, 7] in such a way that the evolution of the
system is adiabatic [16, 17], then a normalized eigenvéetak (0)) of the initial Hamiltonian
H[R(0)] evolves according to [2]

¥ (0)) = €O ln; R(1)) @
whereq,, (¢) is a phase angle and; R) is a normalized eigenvector &f[ R] corresponding to
the eigenvalud, [R], i.e. |n; R) is a solution of

H[R]|n; R) = E,[R]In; R). 2
We shall assume thdnk; R) are smooth functions oR and that they form a complete

orthonormal set of basis vectors for the Hilbert space. This means that for all possible values
of R, m andn,

(m; Rin: R) =8,y and Y |m: R)(m; Rl =1 ©)
The phase angle, (r) appearing in (1) is given by
o () 1= 8, (1) + ¥, (1) (4)
where
1 t
8,(t) 1= —:f E,(t)dt (5)
h Jo
t R(t)
Yu(t) 1= / Ay (1) dt” = / Anl[R] (6)
0 R(0)
. d
A (1) 1=|(H;R(t)|a|n;R(t)> ()
t HereR denotesRY, R?, ..., R?). This notation does not mean thaitis a vector belonging t&<. R is ad-tuple

of real numbers representing the coordinates of a smooth parameter manifold. The latter must not be confused with
the configuration space of the corresponding system.
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and
4 3
A,[R] :=i(n; R|d|n; R) = i (n; R|——|n; R) dR”. 8
[R] :=i(n; Rld|n; R) Z;m |5 a3 R ®)
8,(¢) andy, () are called thelynamicalandgeometricalparts of thetotal phase angle,, (),
respectively. The 1-forma,[R] is known asBerry’s connection 1-forrf2].
The adiabatic geometric phase [18, 19] is given by

D, (1) = W, (1) (1) )
where

(1) = n® (10)
and

W (1) i= (n; R(O)|n; R(1)). (11)

If the parameter®(¢) trace a closed patfi in the parameter space, i.e. therdis R* such
thatR(T) = R(0), then att = T we haveH[R(T)] = H[R(0)], |n; R(T)) = |n; R(0)) and
W, (T) = 1. In particular]y (0)) = |n; R(0)) undergoes a cyclic evolution arg, (T') yields
the cyclic adiabatic geometric phase or Berry’s phase [2]:

®,(T) = I'(T) = ") = gl MlR], (12)

The above derivation of the geometric phase is valid even for the cases where the Hilbert
space is time dependent. The time dependence of the Hilbert space may be reflected in the
definition of the measure used to define integration. For example, consider the problem of a
one-dimensional particle confined between two walls positioned &s0 andL(t), where
L : [0,7] — R* is a smooth function and is the duration of the evolution of the system.

The Hilbert spaceH, is L2([0, L(¢)]) which depends on time. However, we can identify
L?([0, L(1)]) with

L2(R) := {1//:R—>C‘/oo w*(x)l//(x)u,(x)dx<oo} (13)
where the measure functiqn is given byOo
pa(x) == 0(x) — 0(x — L(t)) (14)
andd : R — {0, 1} denotes the step function
6(x) = {1 for x>0 (15)
0 for x <O.

Now let us denote the eigenfunctionsif R(z)] in the position representation lpy, i.e.
¢, (x; 1) == (x|n; R(t)). Then

. d * . Rl ¥ Y G
AZ=—I<(n;R(t)IEIn;R(t)>) =—I</ ¢,’,“</>nudx> =—If Gnthy 1 dx

d [* Y Y )

—ig [ osinarsi [ ggmderi [ o Pid

= Ay +ilgn(x = L) D (16)
where* stands for the operation of complex conjugation. The last equation in (16) is obtained
by making use of the fact thai, are normalized and that = —0(x — L(¢)) = §(x — L())
whereé§(x) is the Dirac delta function. Equation (16) shows thigtand consequently the
Berry connection 1-formi, and the phase angles(¢) andw, () are real, provided that one
chooses the boundary conditigp|,—. ), = O.
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3. Perturbation theory

In order to compute the adiabatic geometric phase (9), one needs to obtain the eigenvectors

|n; R) of the HamiltonianH[R]. There are, however, quite a few Hamiltonians whose

eigenvalue equation is solved exactly. Often, one uses approximation schemes to obtain the

eigenvalues and eigenvectors of a given Hamiltonian. One of the best known approximation

methods of solving the eigenvalue problem is Rayleigh-&tihger perturbation theory

[20, 21]. Next, we shall derive the basic results of Rayleigh—&dinger perturbation theory.
Consider a parametric Hamiltonian of the form

H[R] = Ho[R] + ¢[R] h[R] (17)

where Hy[ R] is a parametric Hamiltonian with the same propertiedd®], ¢[R] is a real
parameter and[R] is a Hermitian operator. If the eigenvalue equation ff R] is exactly
solvable, then one may attempt to obtain the eigenvalues and eigenvecibfRJods power
series ire[R],

ER] = 3 B[R] c[R) (18)
=0

n; R) =) In; R)¢ €[R]" (19)
=0

whose coefficients£(¥[R] and |n; R), are expressed in terms of the eigenvalues and
eigenvectors oHy[ R].

In the following calculations we shall suppress fhdependence of the relevant quantities
for brevity, i.e. we shall use the notation

H = HIR] Ho= Ho[R] €= €[R] h = h[R]
E, = E,[R] |n) = |n; R) E\"” = E"[R] [n)e = |n; R)e.

Substituting equations (18) and (19) into equation (2) and performing the necessary
calculations, we obtain an equation of the form

D lE)eet =0 (20)

=0
where

)0 = (Ho — E)In)o (21)
and

L
)¢ = Holn)e +hinyey — Y EX|n)ey  for £>1. (22)
k=0

The basic idea of the perturbation theory is to construct a solution of equation (20) by requiring
E)e =0 forall ¢=0,1,2,.... (23)

For¢ = 0, thisimplies thaE? and|n), are the eigenvalues and eigenvectorBgf Therefore,
according to the hypothesis we can calculate them exactly. We shall assume without loss of
generality thatn)o form a complete orthonormal set of basis vectors of the Hilbert space and
expresgn), in this basis. This leads to

n)e =Y Chulmo (24)

m
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whereC!, = C! [R] are complex coefficients depending on the paramekersClearly,
Ct,, = ofm|n),. In particular,

CO = 8. (25)
Now let us substitute equation (24) into equation (22) and use equation (25) and the identity
h=""ofrlhls)o|r)o s (26)
to simplify the resulting expression. This yields
de =Y _dplmo where ¢>1 (27)
dy = =8, EP +(EY = E?)C,,, + olm|hin)o (28)
-1
dl = =8, E” +(EQ — EOCL, + Z Chtolmlhlryo — Y ERCL™ for ¢ > 2.
k=1
(29)

Next we enforce equation (23). In view of equation (27) and the linear independence of
the basis vectorsn)o, equation (23) implieg’, = 0 for allm and¢ > 1. For¢ = 1, this leads
to

E} = o(n|h|n)o (30)

and
olml|h|n)o

cr =2
EY — E,)

mn

for m #n. (31

Equations (30) and (31) are obtained by setting= n andm # n in d} = 0, respectively.
Similarly, d’, = 0 for ¢ > 2 give rise to

E© = Z L onlhlr)o — X:E"CZ k for ¢>2 (32)

n-—nn

-1
Con = (EY — E,,?))‘l(Z Cllomlhlro— Y E;“cf;k) for m#n €>2

k=1
(33)
We can use equations (30) and (31), to write equations (32) and (33) in the form
EP =3 (EQ - EOC.CL (34)
r#n
-1
B = YAEC - EOCLCL - Y ENC! o 23 (39)
r#n
EO _ g© E(l) E(l)
2 r m 1 1
Cmn - ;(E'(lo) _ Er(’?) )Cmrcrn (E,(lo) _ E,(no) )Cmn for m # n (36)
EO© E(O) E(l) E(l) =1 E(k)cf k
Cin = Yo o cit+ (s o = X o
Zi\E, — E EY —E — EY — E\,

for m#n €¢>3. (37)
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These equations yield® andC’, with m # n in terms of E®, E® C* and C* where

k < €. One can iterate them to exprds$’ andC’, withm # ninterms ofE©, E®, CL and

Ck . They do not, however, restri€t’,. This means that’, are not fixed by the eigenvalue
equation. This is due to the fact that the eigenvalue equation (2) determines the eigenvectors
up to an arbitrary multiplicative factor. We can restrict the choic&ff by imposing the
normalization condition onn). Substituting equations (19) and (24) m|n) = 4, and

making use of the orthonormality ¢t)q, we find
Zdjéj =0 (38)
j=1

where

d; = X]: Yot (39)

=0 r

Again we seek a solution of equation (38) of the fafm= O forall j =1, 2, .... This leads
to

Cim+Chy == CLChL"™  for j>2 (41)
=1 r

One can show that fon # n, equations (40) and (41) are trivially satisfied. However, for
m = n, they determine the real part 6f, according to

Re(Cl)=0 (42)

j—1
Re(C})=-3>_ > C,Ci;*  for j>2 (43)
=1 r
where Re means the ‘real part of’. The imaginary paffis still arbitrary. This is because
the normalization condition determines the eigenvectors up to an arbitrary phase factor. This
phase factor can, in principle, depend on the perturbation paraeater consequently show
up in all orders of perturbation. The common practice is to set the imaginary paft efjual
to zero [20]. This corresponds to making a particular choice for the phase of the eigenvectors.

4. Perturbative calculation of Berry’s connection 1-form

Having obtained the perturbation series for the eigenvepiomsf the HamiltonianH , we are
in a position to compute Berry’s connection 1-foryp. In fact, we shall instead computg,
of equation (7). A, can be easily obtained fromi,, by changing the time derivatives to the
exterior derivatives.

We shall first substitute equation (24) into equation (19). This yields

0]

n) =Y "> Chlmoe’. (44)
4 m

=0

Next, we differentiate both sides of equation (44) and take the inner product of the resulting
expression withr). Then using equation (24), the identity

d d
dnl<lm)o =Y xinlriodrlIm)o
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and performing the necessary algebra, we find

A =it =13 5 (it + S clichuarigimo)e ke

k=0 m
(45)

where a dot denotes a time derivative.
Making the change of dummy indéx— j := ¢ + k we can write equation (45) in the
form

A= 33 Sl + €l Chy A
(=

j=0 m
+i222c1 tch A w’d+lii2£ T GO (46)
j=0+¢=0 m r+#m j=1¢=1 m

whereAQ) = io(r| & m)o and AQ := AQ), = io(m|S|m)o.
The last term on the right-hand side of (46) may be written as

mn mn

Ecj @*Cin EJ 1 __ %[(é)c{nnl*cfnnej} (Cj @*C@ +Cj [*C[ ) j
J J

Substituting this equation in (46), writing the= 0, 1 and 2 terms in (46) separately, and
making use ot‘ = §,., = 0, we obtain

A, = A9+ [2 Re(Cy) AP +2% Re(c,lnA;?))} + [2 Re(C2) AQ + Z Ict 12A9
r#n

Y (CH G~ G Ch) + Y 2RaCEAD) + Y CHCEAS ¢

r#n m.r#m
o
* Z Z Z[Ct{znz* Crl;m'A(O) + I( )Cigmé*cfm - _Crimz* Crl;m
j=34¢=0 m
+y ity A<°>}f +idf (47)
rn mn rm dt

r

3

where

iZZ(f)C ot e, (48)

]: =1

The first term in the first square bracket on the right-hand side of equation (47) vanishes by
virtue of equation (42). Similarly, using equation (43), we can write the first two terms of the
second square bracket in the form

ZRGCZ A(O) +Z |C,}m ZA(O) Z( |C1 ZA(O) + |Cl |2A(0))

m H mn m

—Z'Cmn (AQ — A0, (49)
m#n

Next let us observe that in view of equation (42),

ckcl —clck=o. (50)

nn —nn nn - nn
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Substituting equations (42), (49) and (50) in equation (47), we obtain

Ay = A+ [22 Re(C}, A,S‘?)}e + [Z{wl (A — A0) + il L ¢l ety

r#n m+#n
df
+2RaCZ, AL+ N " ClCr A9 2+ 0(d) +i=- 51
q mn nm) — r7£m rn mn rm € (6) dt ( )

whereO(e®) denotes the third- and higher-order terms jne.

SN i . Y4 . 0. .
0@ =33 Y ctct a0 wi(1- S Yese, - e,
Jj=3

J (=0 m
D BRG] B (52
r#m

We can rewrite the terms involvindg'® in (52) by separating the= 0 and; terms in the sum
and using equation (43) which yields

i > ¢l ek, AY = 2ReC) )AL + ’i Y Gl Cr AR
(=0 m

(=1 m
j—1
=20 G Con (AR — AD). (53)
m#n (=1

Furthermore, changing the dummy indeix the second sum on the right-hand side of (52) to
k:=j— ¢, we have

J
>i(1- %) chic, =
J

£=0

__—
B ok gk, (54)

J
mn mn
=0 J

Substituting equations (53) and (54) in (52), we find

oo j—1
O =3 [Z Co* Con (AR = A2
j =1

j=31 m#£n
e ., . - A .
. { —(CJ " Cry = ClCh ) + Y Clr e, AD) ”e (55)
m J r#m

Having obtained the perturbation series forwe can write down the perturbation series
for the Berry’s connection 1-form,,. Changing the time derivatives to the exterior derivatives
in the expression (51) fod,,, we find

Ap=A0+ [ZZ Re(C;, A“’))} + [Z{lci,,,F(Af,?) — AP +3i(Cy dCy, — dCo C)

r#n m#n
+2Re(C2, AN} +> > C,l,jc,}mAg?g}z +0(e3) +idf (56)

m r#m

where

AQ = igm|d|n)o AD = A9 = iyn|d|n)o (57)
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and
oo j—1
0= 3 5[ ¥ el et - at)
j=3 ¢=1Lm=#n
S| ach, —dcy e e Y cic,an) e 6o

r#m
In particular, let us consider a case whe(@ = 0 for allm andn. Then,

Ap=)_3i(CrdCy, —dCyr Crr)e” + O(e%) +idf. (59)

mn mn
m#n

If the unperturbed HamiltoniaH is a fixed operator, its eigenvectdrso will not depend on

R. In this caseA® = 0 and equation (59) holds. This equation indicates tifvageometric

phase effects due to a time-dependent perturbation are second- (or higher-) order effects in

the perturbation parameterin fact, this statement is also valid for the general case where
A© £ 0. In order to see this, we recall the hypothesis of the adiabaticity of the evolution [17]

wh|ch requires

Ay = i(ml%m) ~0 forall m #n. (60)

We can repeat the above calculationgffor A,,, with m # n and show that
A = AQ +terms of ordee and higher

Hence, in order to ensure the validity of the adiabaticity condition (&), with m # n must
be at least of orde¢. Consequently, the first perturbative correction to Berry’s connection
1-form (56) is indeed of ordes.

5. Particle in a one-dimensional infinite well with moving boundaries

The Schédinger equation for a particle of massin a one-dimensional infinite square well
with a moving boundary is given by
72 2

iRy (x; 1) =[ 22 33 +V(x, t)]lﬁ(x ) (61)

V(O 1) =y (L)1) = (62)

whereV (x, t) is a real interaction potential, : [0, 1] — R* is a smooth functions is the
duration of the evolution of the system, ane= 0 andL () are the positions of the boundaries.

As argued by Pereshogin and Pronin [1], who studied the case of a free partiel®j,
the Hilbert spac@(, of this system attimeis L2([0, L(¢)]). In particular;X, is time dependent.
One way to handle this situation is to identify with a fibre of a vector bundle, endow this
vector bundle with a connection, and replace the ordinary time derivative appearing in the
Schibdinger equation (61) by the covariant time derivative corresponding to this connection.
This is the approach pursued by Pereshogin and Pronin [1]. If one makes the same choice for
the connection as the one made by Pereshogin and Pronin [1], then one obtains the effective
Hamiltonian

p’ Lo
2M 2L(z)

Hef (1) = — (xp + px) (63)
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which is valid forV = 0. Pereshogin and Pronin suggest that the dynamics of such a particle
is determined by the Sabdinger equation for this effective Hamiltonian subject to the same
boundary conditions as in (62).
The conventional approach to this problem is to determine the dynamics of the system
using the Hamiltonian [3]
2

H = S+ Vi) (64)

where
Vix,t) for x €0, L(1)]

for x ¢ [0, L(?)].
The Schédinger equation for this Hamiltonian is clearly equivalent to the original@thger
equation (61).

We shall approach the problem of solving the Sclinger equation for this system by

applying the time-dependent canonical transformation [14, 15],

Vx, 1) = (65)

V(@) = [¥' (1) :=U@) |y (@) (66)

H(t) — H' (1) :=UOHOUO +TRUG) U@ (67)

x = X =UO)xUD)T p—pi=U@l) pU®)’ (68)
defined by the unitary operator

U(t) = ela®/2aptpx) (69)

wherea = a(¢) is a smooth real-valued function of time. This canonical transformation
corresponds to a time-dependent dilatation of space [15]. This is easily seen by substituting
(69) into (68) which yields

x — x =&y and p—p =e9Dp, (70)
Furthermore, substituting (69) in (67) and using equation (64), we find

H@t) — H @) = 51; +V'(x, 1) — izt)(xp + px) (71)
where
Vi(x, 1) =V, 0. (72)
Next let us choose the dilatation parametér to be
a(t) = In(L(t)/Lo) (73)
whereL := L(0). Substituting (73) in (70), we obtain
x' = (%{?)x and p = (%)p. (74)

In view of equations (65), (72) and (74), the transformed potential is given by
V(x',t) for x' €[0, L(1)]
for x' ¢ [0, L(1)]

L(t)x
_ V( Lo ,t) for x €0, Lo] (75)
o0 for x ¢ [0, Lo].

Vi, )=V, 1) =

T As we shall see below, a consistent treatment of this problem leads to an effective Hamiltonian which differs from
Hefr in the sign of the second term on the right-hand side of (63).
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This means that the Sdhdinger equation for the transformed Hamiltonidf(z) is equivalent
to the Schiddinger equation for the Hamiltonian

L3p? L(t)

B O = Syroe ™ 200

(xp + px) + V<L(t)x , r) (76)
Lo

namely

L R2LE 8% iRL(t)[ 8 9 L(t)x .
1hy'(x; 1) = [_ZML(t)Zﬁ-F 2L (xa+£x)+V( Lo ,t)i|lﬁ(x,t) 77)

wherey’'(x; t) € L?([0, Lo]) and (77) is supposed to be solved with boundary conditions
V(05 1) = ¢'(Lo; 1) = 0. (78)

The canonical transformation defined by (69) and (73), therefore, maps the dynamics of the
system with a time-dependent configuration space, i,d. (0], to a system with a constant
configuration space, i.e. [@.o]. The idea of transforming the problem with moving boundaries
to an equivalent one with fixed boundaries was used previously by Mahai{4], Razavy
[22], Greenberger [6] and Seba [8].

We conclude this section by making a couple of remarks.

(a) Performing the canonical transformation (69) and (73), on the effective Hamiltonian (63)
of Pereshogin and Pronin [1], we obtain the transformed effective Hamiltonian

L%p2

eff (1) = ML

(79)
This is the Hamiltonian of a particle with a time-dependent (effective) mégy =
ML?(t)/L3 which is confined between two walls positionedxat= 0 andLo. The
Schibdinger equation fo;(r) can be easily solved, for the adiabatic approximation
yields the exact result [23]. This means that the approach of Pereshogin and Pronin [1]
leads to a Hamiltonian that is canonically equivalent to that of a free particle with a time-
dependent mass. The eigenvalue problemHgy(r) is also solved exactly and there is
no need to appeal to perturbation theory.

(b) In the Schadinger equation (77) for the transformed Hamiltonian (76), if one combines
the term kU (t) U(1)T = —L(t)(xp + px)/(2L(1)) with the time derivative, one obtains
the ‘covariant time derivative’

v L(8+3>. (80)

T 2e\Mox T ax

The covariant time derivativ®y/, of equation (9) of Pereshogin and Pronin [1] differs
from (80) by a minus sign in the second term on the right-hand side of (80). Indeed, as
pointed out by one of the referees, a consistent treatment of the problem based on the
method of Pereshogin and Pronin [1] shows that in fact (80) is the correct expression for
the covariant time derivative. In order to see this, one must reconsider the definition
of the operator? : L2([0, L(t1)]) — LZ([0, L(12)]) of Pereshogin and Pronin [1]
which is used to defin&,. Pereshogin and Pronin determiﬁ’eby requiring that its
effect on the wavefunction (in the coordinate representation) be that of a dilatation.
It is not difficult to see thatP = 2/(r) wherel/(¢) is given by equation (69) with

a(t) = IN[L () /L(11)]. Note that fory (x, 11) € L2([0, L(tD)]), Py (x, 11) = ¥, (x', 11)
wherex’ = [L(t2)/L(t1)]x € [0, L(2)]. Hence, ﬁwn(x, t1) € L%([0,L(t)]), as
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rgquired’r. Setting; = ¢t + 8r andr, = r, one obtains the infinitesimal form of
P : L?([0, L(t + 81)]) — L2([0, L(¢)]) which is given by

N L ad d
P=1-4t 2L<x8x +axx). (81)

Pereshogin and Pronin’s expressionfbdiffers from (81) in the sign of the second term

on the right-hand side of (81). If one chooses the opposite sign, as Pereshogin and Pronin

do, thenﬁl/f,, (x,11) ¢ L?([0, L(t2)]), and the construction is inconsistent. If one uses

expression (81) foP in Pereshogin and Pronin’s analysis, one obtains the covariant time

derivative (80) and the effective Hamiltonian

. _ Pt Lo
et T 2M  2L(r)

(xp + px). (82)
Note that again the relevant Hilbert spacé& [0, L(1)]).

6. Adiabatic geometric phase due to moving boundaries

6.1. Adiabatic geometric phase for the Hamiltonian (64)

The Hamiltonian (64) is a special case of a parametric Hamiltonian of the form

2
p ~
H[R]=—+V(x;R 83
[R] = 50+ V(x: K] (83)
where
- V(x, R] for x e][0, L]
V(x; R] = (84)
00 for x ¢ [0, L].
R = (L, R%, ..., R are real parameters aid, ..., R? may be viewed as a set of coupling

constants occurring in the expression for
For the case of a free particle = 0, and one can easily solve the eigenvalue equation for
this Hamiltonian. The eigenvalues and eigenfunctions are given by

R2m2n2
~ 2ML2

¢n=¢%$m6%?)wu)—Mx—Ln (86)

respectively. Since the eigenfunctions are real, one expects Berry’s connection 1-form

An = |<¢n|d|¢n> (87)

to vanish identically [24]. This is in fact the case for any real poteftial; 7), because for a
real potential the eigenfunctios may be chosen to be real. More specifically, one has

¢n(x: R] = fu(x, R][6(x) — 6(x — L)] (88)

T Note that here? is an active transformationzs) — P|y). It can also be viewed as a passive transformation
(x| = (x|P =: (x'].

(85)

n

and
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where f,, are real-valued functions depending Brand vanishing at = 0 andL. A simple
calculation shows that

A, = i/oo dx(fn Z % dR[6(x) — O(L — x)]?+ (f,)[0(x) — O(L — x)]8(x — L) dL)
-0 a=0

NI

L n 2 2
[ / dx(Z 9(/n) dR® + 9(fn) dL + (f,)?[0(x) — (L — x)]8(x — L) dL)
0

£~ 9R aL
— li[(i dR' 2+ dr i)(/szdx) —dL (f)?

2 [\&= AR oL J\Jo 7" e

+dL[6(L) — 9(0)]<fn>2|x:L} (89)
=0. (90)

The integral on the right-hand side of (89) is the normppfwhich is supposed to be one.
Therefore, its derivatives vanish. The last two terms vanish, becglisg = 0.

Equation (90) shows that the problem of the adiabatic geometric phase for the
Hamiltonian (64) is trivial. This means that the cyclic adiabatic geometric phase andles
vanish, and the non-cyclic adiabatic geometric pha@sgs) only depend on the end points of
the path traced by the parameters in the parameter space.

6.2. Adiabatic geometric phase for the canonically transformed Hamiltonian (76 Mvith0

The Hamiltonian (76) with/ = 0 is obtained from the parametric Hamiltonian

L(ij2
H"[L,R] = ZMLZ—W(XP*'PX) (91)
by settingL = L(t) andR = R(t) = ML(t)L(t). The Hilbert space of the system is
L2([0, Lo)).
We shall writeH” in the form
H"[L, R] = Ho[L] + €[R] h[L] (92)
where
L2p2 xp + px
Ho[L] := =2 R]:=R d h[L] = ——=———-. 93
olLli= s elR] an [L]:= - (93)

The eigenvalues and eigenfunctionsHyf are given by

R 2n? 2 Tnx
EQO = —— and O (x) = = [— sin[ —— 94
=5 U000 = telmo= | sin( ) (99)

respectively. Becausg? (x) do not depend o or L, A9 = 0 and the Berry connection
1-form is given by equation (59). Using equations (30), (31) and (94) and performing the
necessary algebra, we find
4i(=1)"™*"mn
o _ 1 _

E” = 0 and Cmn = m fOI‘ m 75 n. (95)
Note thatCl do notinvolveL. Furthermore, in view of equations (34)—(3E);, will all be
either zero or proportional th=2. Therefore, their ratios will also be independeni.ofThis
in turn implies that allC’,, should be independent éf. Hence a,, = O for all ¢. In view
of equation (59) anad ¥ = 0, this is sufficient to conclude that, is an exact 1-form and the
geometric phase is trivial.
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6.3. Adiabatic geometric phase for the effective Hamiltonians (63) and (82)

It is not difficult to see that the effective Hamiltonians (63) and (82) are special cases of a
parametric Hamiltonian of the form

P> R

He[R] = o0 + = (xp + px) (96)
whereR € R is a real parameter. The effective Hamiltonians (63) and (82) are obtained from
(96) by requiringR to change in time according to

L(1)

R(t) = iL(t) 97)
where the plus sign corresponds to the effective Hamiltonian (63) and the minus sign to the
effective Hamiltonian (82). In the following we shall only treat the case of the effective
Hamiltonian (63). The analogous results are obtained for the effective Hamiltonian (82) by
changing the sign oR in the relevant equations.

It is well known, at least for the cases where the Hilbert spaéé(®), that a parametric
Hamiltonian which ha® as its parameter space cannot lead to a non-trivial geometric phase.
This is simply because in this case Berry’s connection 1-farpndepends on a single variable
R € R and can be written asfF{R) where F(R) = [ A,(R)dR. This implies that both
cyclic and non-cyclic adiabatic geometric phases are trivial. The same conclusion can also
be reached for the cases when the Hilbert spadé (1) whereM is a fixed configuration
space.

The configuration space of the effective Hamiltonian (63) is the intervdlJ@hich is
variable. We can treat this case by identifying the Hilbert spatg0. L]) with L2 (R) of
equation (13) wherge = 0(x) — 6(x — L). In this way, it is clear that the expression for
the Berry connection 1-form involves two parameters, nankelyvhich enters through the
dependence of the eigenfunctiongH:[ R] on R andL which enters through the dependence
of the measur@ on L. Therefore, the above argument does not appli/de R].

Following Pereshogin and Pronin [1], we compute the eigenfunctiorf&@fR] using
perturbation theory. We shall write

Hett = Ho + €h (98)

where
P2 2
= — = = —_— + .

Hy o, € =ML°R and e (xp + px) (99)

The eigenvalues and eigenfunctionsiHyf are given by
R2m2n? \/E Tnx
0 _ )] — — [ Z g

E~ = SMLZ and Y, (x) = (x|n)o I sm( I ) (100)

Because the eigenfunctions® (x) of Hy are real, ands®(L) = 0, we haveA® = 0.
Furthermore, we can use equations (100), (30), (31) and (99), to calculate
d 2imn(=1)™" dL
AO — —_ S A—
mn lo(mldtln)o mZ DL
1 _ 4i(—)™ " p
mn ERZ(mZ _ n2)2

for m+#n (101)

EY =0 and for m#n.  (102)
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Again one can show that® are all proportional td.~2, andC’
parameters. Hence, in view of equation (56), we have

An = |:2 Z Re(CI}mAigr):):|6 e
m#n

() ()
- m#(mz—n§3 w2hL

_ m?n? —16MRLdL N
~(Z ) o)

m#n

m2n? —16MLdL
:<Z (mZ—n2>3>< 77 >+ (103)

m#n

are independent of the

where ‘.. denotes the terms which are either exact forms or of higher order. in
Equation (103) coincides with the result of Pereshogin and Pronin [1]. Notel'thaf
Pereshogin and Pronin [1] is equal4o4, = — A, /dr.

Itis worth mentioning that in view of equations (99), (97) and (101), bdfhwith m # n
ande are proportional td.. This shows that the choice made for the perturbation parameter
is consistent with the adiabaticity of the evolution. In other words, the perturbation theory is
valid for an adiabatic evolution of the system whéres very small.

7. Conclusion

In this paper we have addressed two problems. First, we presented a systematic perturbative
calculation of Berry’s connection 1-form and showed that Berry’s phase due to a time-
dependent perturbation is a second-order effect in the perturbation parameter. Next, we studied
the quantum dynamics of a particle confined between moving walls and reconsidered the
problem of the adiabatic geometric phase for this system.

We showed that using the conventional approach based on the Hamiltonian (64), this
system does not involve any non-trivial adiabatic geometric phases. For the case of a free
particle whereV = 0, transforming this system into a canonically equivalent one with fixed
boundaries does not lead to non-trivial adiabatic geometric phases either. However, if one
postulates a new effective Hamiltonian for the system, then in principle non-trivial geometric
phases may arise even for the case of a free particle. For example, if one uses the effective
Hamiltonian (63) or (82), one obtains a non-trivial adiabatic geometric phase. The effective
Hamiltonian (63) turns out to be canonically equivalent to that of a free particle of variable
mass which is confined to an infinite square well with fixed boundaries. The latter system can
be solved exactly. In particular, one can show that it does not involve non-trivial adiabatic
geometric phases. The occurrence of non-trivial adiabatic geometric phases for the effective
Hamiltonian (63) has, therefore, its origin in the time-dependent canonical transformation
relating the two systems [25].

We argued that a consistent treatment of the dynamics of a particle confined between
a fixed and a moving boundary using the method of Pereshogin and Pronin [1] leads to an
effective Hamiltonian which differs slightly from that obtained by Pereshogin and Pronin. The
occurrence of non-trivial geometric phases for this effective Hamiltonian is a clear indication
of the fact that the approach of Pereshogin and Pronin is not equivalent to the conventional
approach. Since both approaches aim to describe the dynamics of the same physical system,
an experimental investigation of their predictions can easily determine their validity.
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Finally, we wish to remark that the dynamics of a massless particle confined between

moving boundaries can also be treated by transforming the problem to an equivalent one with
fixed boundaries [22]. The phenomenon of the geometric phase for such a particle has not
been addressed in a satisfactory manner (see, however, [12]) though the geometric phases in
optical systems have been thoroughly investigated (see, for example, the review [26]). The
relativistic analogue of the adiabatic geometric phase has been discussed in [27]. The results
of [27] may also be used to treat the case of massless particles satisfying the wave equation.
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